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Interaction of steep waves with
offshore structures

B y R. Eatock Taylor1 and G. X. W u2

1Department of Engineering Science, University of Oxford,
Parks Road, Oxford OX1 3PJ, UK

2Department of Mechanical Engineering, University College London,
London WC1E 7JE, UK

Offshore structures having large diameter columns at the waterline cause a significant
disturbance to the ambient wave field, and large run-up around the columns. The
paper discusses prediction of this effect in regular sinusoidal waves and in focused
wave groups characteristic of extreme storm waves. Results are obtained from linear
and second-order nonlinear analytical solutions for vertical circular cylinders. For
very large waves, however, a fully nonlinear analysis is needed, which must be based
on numerical discretization in both temporal and spatial dimensions. A finite-element
procedure for predicting the interaction of steep waves with offshore structures is
briefly introduced.

1. Introduction

Motivated to a large extent by developments in the offshore industry, there has been,
over the last 25 years, a considerable corpus of research into the diffraction of wa-
ter waves. Analytical solutions have been obtained for bodies of simple geometry in
sinusoidal waves, and numerical methods have been developed to solve the poten-
tial flow problem for structures of arbitrary geometry at or near the free surface.
It is assumed in such work that the characteristic dimensions of the structure are
sufficiently large that separation effects due to viscosity can be ignored. Where this
is not the case it has been traditional to use the semi-empirical Morison equation
in offshore design, although recent advances in obtaining numerical solutions of the
Navier–Stokes equations are beginning to have an influence.

The emphasis during this period has largely been on the estimation of hydrody-
namic forces. These provide the necessary loading conditions for an assessment of
ultimate structural strength and fatigue life, and for estimating the motions of float-
ing structures. It is only much more recently that interest has been taken in the
disturbance to the free surface resulting from wave diffraction, and in the consider-
able magnification effects which can affect wave elevations locally. This seems to have
arisen for a combination of reasons. Historically the industry has been dominated
by the use of fixed platforms, mostly constructed of tubular members which do not
significantly disturb the incident wave field. The design ‘air-gap’ between the under-
side of the deck and the highest predicted undisturbed storm wave at the location of
the structure, in the highest astronomical tide, could be minimal, reflecting mainly
uncertainties in prediction of maximum undisturbed wave height. In the exceptional
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cases of the large diameter columns of gravity platforms, it was easy to design for
an increased air gap: the cost of raising the height of the columns was not thought
sufficient to call for great accuracy in the prediction of the disturbed wave elevation
and simple approaches were deemed acceptable. Recent experiments, however, have
demonstrated higher than expected local elevations, leading to expensive changes in
design or operational procedure for both fixed and floating platforms. This is par-
ticularly critical for weight sensitive structures such as certain tension leg platforms
(TLPs). To permit economic exploitation for moderate accumulations of hydrocar-
bons in deep-water hostile areas, such as West of Shetlands, new types of TLP are
being developed. These are carefully optimized for pay-load capacity, and there is
a trade-off between pay-load and deck height: increasing the latter without reduc-
ing the former requires a larger buoyant hull, hence larger vertical wave loads and
greater difficulty in maintaining minimum tether tension. The significance of local
wave disturbances, and run-up around columns, is not however restricted to TLPs
and fixed structures. Reports of damage beneath the lowest decks of semisubmersible
platforms provide further incentive for investigating this problem.

This paper provides a brief review of approaches for predicting localized wave
disturbance effects due to diffraction. First we illustrate the application of standard
linear diffraction theory. The disturbance by a circular cylinder in sinusoidal waves
is compared with the behaviour in a focused wave group (characterizing the largest
wave in a random seaway). Linear theory, however, is a poor model for conditions
in extreme waves. The importance of nonlinear interactions in a focused wave group
has very recently been highlighted by the experimental work of Baldock et al. (1996).
This concerned incident waves alone, but it is clear that such interactions will also
affect waves scattered by structures. An understanding of such effects can be sought
by extending linear theory to second order, using the expansion procedure first sug-
gested in the context of nonlinear water waves by Stokes (1847). Much research has
concentrated on the analysis of second-order wave diffraction forces. In our own re-
cent work (Wu 1991; Chau & Eatock Taylor 1992; Eatock Taylor & Chau 1992;
Huang & Eatock Taylor 1996) we have attempted to develop semianalytical and
fully numerical methods which yield the second-order wave elevation at any point,
and more generally the complete flow field. We review some features of this work
below, and illustrate its application to analysis of the second-order disturbance of an
incident wave group.

Ultimately, of course, understanding of the interaction of extreme wave groups with
offshore structures requires a fully nonlinear analysis. Methods are being developed
in the context of assessing ‘ringing’ loads, characterized by large high-frequency
transient components of force when a steep wave encounters a structure. Insight
into the occurrence of such forces is being gained from approximate analyses for
cylinders, based on various assumptions of slenderness (Rainey 1995; Faltinsen et
al. 1995). Such approximations, however, are inevitably unable to provide reliable
quantitative indications of wave disturbance effects. The only viable approach for
predicting the disturbance by large bodies, even for the simple geometry of a vertical
cylinder, would appear to involve full numerical discretization. Ferrant (1995) has
used a boundary-element method. Volume-based discretization procedures for solving
the fully nonlinear wave diffraction problem are also being developed. Mehlum (1993)
uses a spline representation; and a finite-element discretization is being developed by
Cai et al. (1996). Wu & Eatock Taylor (1994, 1995), Greaves et al. (1995) and Wu et
al. (1996) have obtained results from both two- and three-dimensional finite-element
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formulations for transient nonlinear wave diffraction problems, and the present paper
concludes by briefly summarizing this approach.

2. Linear analysis of waves interacting with circular cylinders

(a ) Cylinders in sinusoidal waves
The linear diffraction problem for a single vertical cylinder in deep-water sinusoidal

waves was first solved by Havelock (1940). It is summarized here, as it forms the
basis for what follows. The fluid is incompressible and irrotational, and the problem
is posed in terms of a velocity potential Φ(x, y, z, t). The origin of the Cartesian
coordinate system is located at the intersection of the mean free surface with the
axis of the cylinder, and the z-axis is directed positive upwards. It is also convenient
to use polar coordinates (r, θ, z), where x = r cos θ, y = r sin θ.

We first consider the linear diffraction problem in which the incident waves are
sinusoidal having frequency ω, and amplitude A, propagating in the direction of
positive x. The water has depth d. We take

Φ(x, y, z, t) = Re{Aφ(x, y, z)e−iωt}, (2.1)

and decompose the complex potential φ into incident (I) and diffracted (D) compo-
nents, respectively. The incident potential is written

φI = − ig
ω

cosh(k(z + d))
cosh(kd)

eikx = − ig
ω

cosh(k(z + d))
cosh(kd)

∞∑
n=0

εninJn(kr) cos(nθ), (2.2)

where ε0 = 1, εn = 2 for n > 0. The wave number k is given by k tanh(kd) = ω2/g. φ
satisfies the linear free surface condition for no flow through the surface of the cylinder
(r = a), where the radius of the cylinder is a. φD also satisfies the radiation condition
for outgoing waves. The solution to this boundary value problem, as obtained by
Havelock (1940), is

φ(r, θ, z) = − ig
ω

cosh(k(z + d))
cosh(kd)

[
eikr cos θ −

∞∑
n=0

εnin
J ′n(ka)H(1)

n (kr)

H
(1)′
n (ka)

cosnθ
]
. (2.3)

From this we obtain the linear wave force on the cylinder, and the run-up, which
we define as the modulus of the non-dimensional free surface elevation around the
waterline. The behaviour of the linear force on the single cylinder is extremely well
known, and we do not consider this here. The run-up is

η(a, θ) =
∣∣∣∣ iωg φ

∣∣∣∣ =
∣∣∣∣eika cos θ −

∞∑
n=0

εnin
J ′n(ka)H(1)

n (ka)

H
(1)′
n (ka)

cosnθ
∣∣∣∣. (2.4)

This quantity is shown as a surface in figure 1, plotted against θ and ka. For small
values of ka (long waves), the effect of diffraction is negligible, and the run-up is
everywhere close to one corresponding to the incident wave. For high values of ka
(short waves), the behaviour upwave approximates to pure reflection of a plane wave
by a wall, and the run-up is close to two; but behind the cylinder, in the shadow
region, the run-up is of course close to zero.

These results are of considerable practical relevance, though they have in the
past often been disregarded. In the range of typical geometries, the values of ka
corresponding to severe storm waves can be such that the run-up is considerably
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Figure 1. Wave number dependence of run-up at a vertical cylinder.

greater than one. Consider, for example, a column of a large tension leg platform
having a radius of 15 m: in a sinusoidal wave of 10 s period in deep water the incident
wave amplitude would be increased locally by 56% as a result of diffraction by the
column considered in isolation (i.e. ignoring the additional amplification that can be
caused by interaction effects between the columns, Eatock Taylor & Sincock 1989).
It might be assumed that by simply increasing the under deck air-gap the designer
could avoid the implications of such local increases in wave elevation. This overlooks
the fact that these platforms can be highly weight sensitive, and increasing the height
of the deck by adding structure may not be a viable option.

(b ) Cylinders in a wave group
The preceding discussion has focused attention on run-up in regular sinusoidal

waves. A more realistic design condition, however, is the large wave group in a ran-
dom seaway. We consider here the critical case of long-crested random waves. It has
been shown by Boccotti (1983) and Tromans et al. (1991) that under appropriate
conditions of ergodicity and linear random wave theory, the highest wave tends to a
profile proportional to the time history which is given by the autocorrelation func-
tion for the wave elevation process. We now seek to establish the characteristics of
the run-up in such a case.

By way of illustration, we examine the conditions in a storm defined by the Inter-
national Towing Tank Conference (ITTC) wave spectrum (see for example Price &
Bishop 1974). The one-sided ITTC frequency spectrum is written (in units of metres
and seconds) as

G(ω) =
0.0081g2

ω5 exp
(−3.11
H2
sω

4

)
, (2.5)

where Hs is the ‘significant’ wave height. We shall use the dimensionless form

Γ (σ) =
0.0081
σ5 exp

( −3.11
g2h2σ4

)
, (2.6)

where
σ = ω

√
a/g =

√
ka; h = Hs/a. (2.7)

(We are assuming deep-water waves). The corresponding dimensionless time auto-
correlation function is

ρ(τ) =
∫ ∞
−∞

Γ (σ)e−iστ dσ, (2.8)
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Figure 2. Time history of the largest wave group in an ITTC seaway (h = 0.5)

.

elevation
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distance

Figure 3. Spatial evolution of the wave group.

where τ = t
√
g/a. The time history of the extreme wave group is then proportional

to ρ(τ) in the region around τ = 0. Figure 2 shows such a wave group (for the case
h = 0.5), scaled to have a unit value at the crest. The spatial profile may be obtained
in a similar manner from the wave number spectrum. The evolution of the group may
then be shown as a surface, plotted against the axes of space and time. This is given
in figure 3, where time has been non-dimensionalized as above, and the spatial axis
is x/a.

We now examine the run-up at the cylinder resulting from diffraction of this wave
group. We consider the case when the group is focused such that the incident wave
peaks at the location of the upper face of the cylinder. Figure 4 shows cross-sections
of the wave through the plane y = 0. Figures 4a–c correspond to the three storms
defined by h = 0.25, h = 0.5 and h = 1.0, respectively. In each case the incident wave
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Figure 4. Total scattered wave profiles in 3 ITTC wave groups: (a) h = 0.25; (b) h = 0.5;
(c) h = 1.0.

group is shown, together with the total scattered wave (incident plus diffracted), at
the time when the total elevation is a maximum at the upwave face (the left of the
two vertical lines denoting the cylinder). It is found that in the lowest of the three
seastates (having components at the highest frequencies), the incident wave elevation
is increased by 61% at the upwave face.

The analysis of Boccotti (1983) suggests that one can define a linear sinusoidal
wave which locally is close to the linear focused wave group, by choosing the wave pe-
riod Ts ≈ 1.2Tz (where Tz is the mean zero up-crossing period of the random sea state
giving rise to the group). The corresponding dimensionless frequency is σs ≈ 0.47/

√
h

(based on the definition in equation (2.7)), which is somewhat higher than the fre-
quency of the peak of the wave spectrum, σp = 0.40/

√
h. Figure 5 compares the

profiles of the wave group and a closely equivalent sinusoidal wave (σp = 0.45/
√
h),
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Interaction of steep waves with offshore structures 599

Figure 5. Wave profiles in a sinusoidal wave and in an ITTC wave group: ——, ITTC incident;
– – –, ITTC scattered; · · · · · ·, sine incident; − · − · −, sine scattered.

together with the associated total scattered waves, for the case when h = 0.5. The
results are plotted at the time when the wave group gives maximum run-up (which
is just before the crest reaches the upwave face). It is seen that the sinusoidal wave
leads to similar behaviour, and in spite of the wave group having its maximum energy
at a lower frequency, it still leads to a significant increase in local elevation due to the
effect of diffraction. This effect can also be reproduced in an appropriately chosen
bichromatic wave group, as discussed below in the context of nonlinear analysis.

The single cylinder linear diffraction analysis may readily be extended to the case
of multiple vertical cylinders. Linton & Evans (1990) described an effective procedure,
based on use of the Bessel addition theorem. Because of the interactions between the
cylinders, large local amplifications can occur both at the cylinders and on any plane
of symmetry parallel to the wave direction. This was demonstrated numerically in the
results of Eatock Taylor & Sincock (1989). Recently, Maniar & Newman (1996) and
D. V. Evans (1996, personal communication) have shown that, for certain spacings
of the cylinders, trapped waves can exist. The flow field in a regular wave whose
frequency corresponds to a trapped mode can be expected to be characterized by
extremely high local wave elevations.

All this, however, is based on simple linear theory, which still forms the basis for de-
sign calculations of run-up around the large diameter columns of offshore platforms.
Nonlinear effects can be expected to limit the very high local elevations predicted
in the case of trapped modes excited by multiple cylinders in regular waves. On the
other hand, nonlinear interactions between the various components can significantly
increase the peak elevation in a wave group (see, for example, Longuet Higgins &
Stewart 1960; Baldock et al. 1996).

It is convenient to investigate such effects by extending the linear analysis to second
order, based on the expansion procedure of Stokes (1847). This requires solution of
the second-order diffraction problem.

3. Second-order analysis

The analysis of second-order diffraction by a single vertical circular cylinder has
received considerable attention in recent years, largely in the context of obtaining
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Figure 6. Wavenumber dependence of second-order run-up at a vertical cylinder: (a) double
frequency component; (b) mean component.

expressions for second-order forces. Thus it has been shown, for example by Lighthill
(1979) and Molin (1979), that provided only forces are required, a technique can be
applied that avoids the need to solve directly for the second-order potential in the
Stokes expansions. Eatock Taylor & Hung (1987) used this technique to obtain a
semianalytical formulation for the second-order force on a single cylinder in regular
waves, and Kim & Yue (1990) gave results for a single cylinder in bichromatic waves.
Moubayed & Williams (1995) developed the corresponding analysis and results for
second-order forces on multiple vertical cylinders, based on the interaction theory of
Linton & Evans (1990). A detailed further investigation of the second-order force on
the single cylinder in regular waves has recently been completed by Newman (1996).
In particular, he has obtained consistent asymptotic expansions for the limits of long
and short wave lengths. This has led to the important conclusion that the slender
body approximation becomes inaccurate at surprisingly small values of dimensionless
wave number (i.e. the accuracy deteriorates rapidly as ka exceeds 0.1).

In order to compute the free surface elevation and wave kinematics, it is necessary
to solve for the second-order potential directly. Chau & Eatock Taylor (1992) gave
the analysis for a single vertical cylinder in regular waves, and this was extended
by Huang & Eatock Taylor (1996a, b) to truncated cylinders and bichromatic waves.
Extending equation (2.1), we can express the potential in the form of the Stokes
expansion

Φ(x, y, z, t) = Re
{ 2∑
j=1

Ajφ
(1)
j (x, y, z)e−iωjt

+
2∑
j=1

2∑
k=1

[AjA∗kφ
−
jk(x, y, z)e

−iω−
jk
t +AjAkφ

+
jk(x, y, z)e

−iω+
jk
t]
}
, (3.1)

where Aj is the complex amplitude of the jth component and ω±jk = (ωj ± ωk).
Any force or kinematic quantity may then be expressed in the form

X(t) = Re
{ 2∑
j=1

AjH
(1)
j (ωj)e−iωjt +

2∑
j=1

2∑
k=1

AjA
∗
kH
−
jk(ωj ,−ωk)e−iω−

jk
t

+
2∑
j=1

2∑
k=1

AjAkH
+
jk(ωj , ωk)e

−iω+
jk
t

}
. (3.2)
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Figure 7. Time histories of a bichromatic wave group and of first and second-order run-up:
——, first-order incident wave; – – –, first-order scattered wave; · · · · · ·, first- and second-order
scattered wave: (a) at a vertical cylinder; (b) at a wall.

H(1) and H± are the linear and quadratic transfer functions, respectively, the latter
providing for both sum and difference frequency components. The quadratic transfer
function (QTF) for the second-order sum frequency elevation can be written

H+
jk =

{
− 1

4g
∇φ(1)

j ∇φ(1)
k +

ωjωk
2g2 φ

(1)
j

∂φ
(1)
k

∂z
− iω+

jk

g
φ+
jk

}∣∣∣∣
z=0

. (3.3)

For the corresponding difference frequency QTF, the superscripts + are replaced by
−, and in the products the second term of each pair is replaced by its conjugate.

Calculation of the QTFs involves solving for the important second-order potentials
φ±. These comprise contributions from ‘free’ wave components, and ‘locked’ waves
resulting from the inhomogeneous boundary condition satisfied by the second-order
potential on the free surface. The solution for the latter component can be expressed
in terms of a line integral over (a < r < ∞), which is highly oscillatory and con-
verges very slowly as r → ∞. Details of this analysis are given by Chau & Eatock
Taylor (1992) and Huang & Eatock Taylor (1996a). The semianalytical solutions for
truncated vertical cylinders and groups of cylinders are given in Huang & Eatock
Taylor (1996b).

As an illustration of the second-order results for run-up, we consider the case of
the cylinder of radius a and plot the diagonal terms of the QTFs for η±(a, θ) as
functions of ka and θ (analogous to the linear run-up plotted in figure 1). Figures 6a
and 6b are for the sum and difference frequency terms, respectively, which in this
case correspond to ω+

jk = 2ω and ω−jk = 0. The calculations have been performed
for a cylinder in water of depth 20 times the radius. The double frequency QTF is
shown as the non-dimensional modulus k|H+

jk|, and the mean QTF, being real, is
shown as kH−jk. We recalled previously that the high-frequency limit of the linear
run-up at the upwave face of the cylinder corresponds to pure reflection, hence a
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100% increase on the incident amplitude. The corresponding second-order solution
for pure reflection by a plane wall can also be simply obtained. For deep-water waves
the QTFs reduce to the form

H+
jk = −(ω2

j + ω2
k − ωjωk)/g = H−jk. (3.4)

Hence the high-frequency limits of the diagonal terms of both sum and difference
frequency QTFs for wave elevation at the upwave face of the cylinder in deep water
both reduce to the wave number of the first-order incident wave. This can be clearly
seen in figures 6a, b.

The wave elevation run-up QTF can now be used to investigate the effect of non-
linear wave–wave interactions when a large wave group encounters the cylinder. Let
us illustrate this by considering a linear deep-water bichromatic wave group, encoun-
tering a cylinder of radius a = 10 m. We choose frequency components defined in
dimensionless form by k1a = ω2

1(a/g) = 0.4 and k2a = ω2
2(a/g) = 1.6; the ampli-

tudes are taken as A1/a = 0.2, A2/a = 0.4; and the components are in phase at
t = 0 at the upwave face of the cylinder. The time history of the elevation of the
undisturbed first-order incident wave group at the upwave face is shown as the solid
line in figure 7a (divided by (A1 + A2)). This is similar to the ITTC wave groups
shown in figure 4. The dashed line shows the total corresponding linear scattered
wave (divided by (A1 + A2)). Also shown in figure 7a (dotted) is the total run-up
to second order (divided by (A1 + A2)): i.e. this includes all first and second-order
contributions. For comparison the corresponding results for the plane wall are shown
in figure 7b. In this time history one notes clearly the sharpening of the crest and
flattening of the trough.

These and similar results give an indication of the influence of second-order effects
on run-up. In extreme waves, however, it is likely that higher-order nonlinearities
may also be important, and there is therefore a need for fully nonlinear analysis of
the diffraction problem.

4. Nonlinear simulations

To solve the fully nonlinear problem requires numerical discretization in both
space and time. Boundary-element methods have proved popular for solving the lin-
ear and second-order diffraction problems in the frequency domain. These lead to
fully populated coefficient matrices of Green functions and their derivatives, which
are frequency dependent. Typically only the surface of the body needs to be dis-
cretized, and results are only required at a relatively small number of frequencies;
hence the time to compute the solution of the matrix equations for realistic dis-
cretizations is usually now manageable on modern workstations. For the nonlinear
problem in the time domain, however, the discretization must be regularly updated
as the wave field evolves, and the resulting matrix must be solved at a very large
number of time steps. This has led us to conclude that an adaptive mesh finite-
element discretization is preferable, in which one can exploit the small bandwidth
of the resulting coefficient matrices. Although the total number of unknowns in the
three-dimensional finite-element discretization is substantially greater than in the
boundary-element representation of the same problem, the time to solve the matrix
equations can be much less (Wu & Eatock Taylor 1995). This has been confirmed by
Cai et al. (1996).

Wu & Eatock Taylor (1994, 1995) and Greaves et al. (1995) have developed such
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Interaction of steep waves with offshore structures 603

Figure 8. Results from finite-element analysis of wave evolution in a rectangular tank:
– – –, A/d = 0.01; · · · · · ·, A/d = 0.05; ——, analytical.

a formulation for the restricted case of two-dimensional flow in the vertical plane.
The extension to three dimensions is given in Wu et al. (1996). They show how a
domain–decomposition method can be used to divide the flow field into separate
domains, in each of which the solution at each time step is first solved independently
of neighbouring domains. Continuity between domains is then achieved through a
process of iteration. To investigate the propagation of a transient wave past a struc-
ture, it is unnecessary to consider the domains downstream of the wave front. This
approach can be combined with the idea of energy absorbing layers to effect suit-
able radiation conditions downstream of the structure (as used for example in the
boundary-element approach of Ferrant (1995)).

In the process of validating the adaptive mesh three-dimensional nonlinear sim-
ulation, we have considered the response to an initial free surface disturbance in a
rectangular tank. Figure 8 shows the time history of free surface elevation at the
centre of a tank of length 2d and width 0.3d, where d is the depth of water. The
mesh is based on dividing the rectangular volume by 21 transverse × 7 longitu-
dinal × 17 horizontal planes, leading to 1920 bricks, each of which is subdivided
into six tetrahedral finite elements (i.e. 11520 in total). The initial disturbance is
two-dimensional, varying down the length of the tank as a cosine of amplitude A
and wave length 2d, with the crest in the centre at t = 0. The figure compares two
cases (A/d = 0.01, 0.05) with the analytical solution for the corresponding linear
standing wave, which has frequency σ = (π tanhπ)0.5. (The frequency and time are
here non-dimensionalized as in §2, with d replacing a. The time step was ∆τ = 0.1.)
The results are analogous to those from the two-dimensional cases considered by Wu
& Eatock Taylor (1994), but satifying the further (non-trivial) test that the wave
remains sensibly two-dimensional in the three-dimensional simulation.

This and related test cases are confirming the viability of the finite-element so-
lution procedure. When the second-order theory reviewed in §3 ceases to be valid,
it is approaches such as these which must be employed to simulate a steep wave
group encountering a complex offshore structure. The computational effort will be
substantial, but it is only by this means that reliable theoretical predictions can be
made for realistic extreme conditions.
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